orange數(shù)據(jù)挖掘
v2.7 正式版- 軟件大小:123.30 MB
- 軟件語言:中文
- 軟件類型:國產(chǎn)軟件 / 數(shù)據(jù)庫類
- 軟件授權(quán): 免費軟件
- 更新時間:2017-09-25 11:57:37
- 軟件等級:
- 軟件廠商: -
- 應(yīng)用平臺:WinXP, Win7, Win8, Win10
- 軟件官網(wǎng): http://orange.biolab.si/
相關(guān)軟件
橙色云生態(tài)鏈app(Uniorange)v1.0.5安卓官方版
98.29 MB/中文/10.0
Orange Day智能穿戴v0.2.9安卓版
74.16 MB/中文/10.0
Orange跨平臺文件搜索工具v0.0.4 電腦版
17.32 MB/中文/10.0
喵星人大冒險游戲(OrangeCat)v1.0 安卓版
42.30 MB/中文/10.0
juegos orange游戲盒子v7.5.21 安卓版
15.50 MB/中文/10.0
軟件介紹人氣軟件精品推薦相關(guān)文章網(wǎng)友評論下載地址
orange數(shù)據(jù)挖掘軟件是一款處理數(shù)據(jù)的應(yīng)用,操作起來非常的簡單,快速而又多功能的可視化編程,有興趣的朋友歡迎來IT貓撲網(wǎng)下載體驗!還有更多的功能等你來發(fā)現(xiàn)!
orange軟件介紹
Orange是一個基于組件的數(shù)據(jù)挖掘和機器學(xué)習(xí)軟件套裝,它的功能即友好,又很強大,快速而又多功能的可視化編程前端,以便瀏覽數(shù)據(jù)分析和可視化,基綁定了Python以進行腳本開發(fā)。它包含了完整的一系列的組件以進行數(shù)據(jù)預(yù)處理,并提供了數(shù)據(jù)帳目,過渡,建模,模式評估和勘探的功能。其由C++ 和 Python開發(fā),它的圖形庫是由跨平臺的Qt框架開發(fā)。
orange使用方法
具體操作是用python嗎
你數(shù)據(jù)是存在哪兒的,如果是存在mysql里面的,那可以 使用orngMySQL和orngSQL模塊,如下所示 t=orngMySQL.Connect('localhost','root','','test') data=t.query("SELECT * FROM busclass") tree=orngTree.TreeLearner(data) orngTree.printTxt(tree,nodeStr="%V (%1.0N)",leafStr="%V (%1.0N)")
Orange怎么用?
Orange是類似KNIME和Weka KnowledgeFlow的數(shù)據(jù)挖掘工具,它的圖形環(huán)境稱為Orange畫布(OrangeCanvas),用戶可以在畫布上放置分析控件(widget),然后把控件連接起來即可組成挖掘流程。這里的控件和KNIME中的節(jié)點是類似的概念。每個控件執(zhí)行特定的功能,但與KNIME中的節(jié)點不同,KNIME節(jié)點的輸入輸出分為兩種類型(模型和數(shù)據(jù)),而Orange的控件間可以傳遞多種不同的信號,比如learners, classifiers, evaluation results, distance matrices, dendrograms等等。Orange的控件不象KNIME的節(jié)點分得那么細,也就是說要完成同樣的分析挖掘任務(wù),在Orange里使用的控件數(shù)量可以比KNIME中的節(jié)點數(shù)少一些。
Orange的好處是使用更簡單一些,但缺點是控制能力要比KNIME弱。
除了界面友好易于使用的優(yōu)點,Orange的強項在于提供了大量可視化方法,可以對數(shù)據(jù)和模型進行多種圖形化展示,并能智能搜索合適的可視化形式,支持對數(shù)據(jù)的交互式探索。
Orange的弱項在于傳統(tǒng)統(tǒng)計分析能力不強,不支持統(tǒng)計檢驗,報表能力也有限。Orange的底層核心也是采用C++編寫,同時允許用戶使用Python腳本語言來進行擴展開發(fā)。
持Python的Orange數(shù)據(jù)挖掘軟件實例:
Orange的特點是界面友好易于使用,提供大量可視化方法,提供Python編程接口,于是決定試用一下。
網(wǎng)上可以搜索到的Orange中文資料不多,這篇《利用orange進行關(guān)聯(lián)規(guī)則挖掘》 給了一個通過Python調(diào)用Orange中的Apriori算法進行關(guān)聯(lián)分析的例子,更詳細的通過Python調(diào)用Orange的文檔參考官網(wǎng)上的Beginning with Orange.圖形界面的使用沒看到文檔,不過界面簡單易懂,看看features里的screenshots也可猜個大概。參考Beginning with Orange中的Classification小節(jié),以用Naive Bayesian Classifer處理Orange自帶的示例數(shù)據(jù)集voting.tab為例,對代碼做了少量修改:
#-*- encoding: utf-8 -*-
# 導(dǎo)入orange包
import orange
# 導(dǎo)入測試數(shù)據(jù)voting.tab
data = orange.ExampleTable("voting")
# 使用Naive Bayesian Classifer
classifier = orange.BayesLearner(data)
# 輸出
all_data = len(data)
bingo = 0
for d in data:
# 分類器輸出的類別
cc = classifier(d)
# 原文件中數(shù)據(jù)中的類別
oc = d.getclass()
if oc == cc:
print 'bingo!',
bingo += 1
else:
print 'oh,no!',
print "original", oc, "classified as", cc
# 輸出Classification Accuracy
print "CA: %.4f" % (float(bingo)/all_data)
運行上面的代碼,可得到如下輸出:
bingo! original republican classified as republican
……
bingo! original republican classified as republican
bingo! original republican classified as republican
CA: 0.9034
分類準(zhǔn)確率CA為0.9034.
Python調(diào)用非常容易,只用了十幾行代碼,不過如果用圖形界面,這個簡單的分類只需要選擇Data->File,Classify->Naive Bayes和Evaluate->Test Learners就行了,如下圖所示,在File窗口中選擇Data File為voting.tab,通過簡單的拖拉將widget連起來即可,雙擊Test Learners可以看到CA為0.9011.
對比Python代碼的輸出和圖形界面的結(jié)果,會發(fā)現(xiàn)兩個結(jié)果不一致,原因是圖形界面中使用的是5重交叉驗證,而代碼中使用的訓(xùn)練數(shù)據(jù),如果選擇”Test on train data”,兩者就一致了。
更多>> 軟件截圖
推薦應(yīng)用
navicat for mysql 64位 25.05 MB
下載/中文/2.0 v16.0.110 中文免費版microsoft access 2013 140.00 MB
下載/中文/4.0 免費完整版HeidiSQL(MySQL圖形化管理工具) 5.77 MB
下載/中文/10.0 v11.2.0.6219 綠色中文版Oracle 11g 64位/32位 2.05 GB
下載/中文/2.0 v11.2.0.1.0 官方第二版sqlyog ultimate 64位 7.50 MB
下載/中文/7.0 v13.1.1 官方中文注冊版Navicat for Oracle 16.70 MB
下載/中文/10.0 v12.0.29 中文版Access數(shù)據(jù)庫查詢分析器 6.74 MB
下載/中文/10.0 v2.4 免費中文版dbc2000 win7 64位 16.10 MB
下載/中文/10.0 中文漢化版
其他版本下載
精品推薦
相關(guān)文章
下載地址
orange數(shù)據(jù)挖掘 v2.7 正式版
查看所有評論>> 網(wǎng)友評論
更多>> 猜你喜歡
- Microsoft SQL Server 2000 Personal Edition
- SQL Server 2005 SP2
- Microsoft SQL Server 2000簡體中文企業(yè)版
- PowerDesigner
- 數(shù)據(jù)庫文件轉(zhuǎn)換工具(DBConvert for JSON and SQL)
- DFB數(shù)據(jù)庫修復(fù)工具DataNumen DBF Repair
- mysql for ubuntu
- MongoDB Compass可視圖形化管理工具
- Exportizer(修改編輯數(shù)據(jù)庫軟件)
- SQL Server Compact 4 安裝包
- Navicat premium數(shù)據(jù)庫管理軟件
- Oracle Database 12c數(shù)據(jù)庫軟件